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ABSTRACT

Subsonic and transonic steady and unsteady flowfields over airfoils are inves-

tigated with the numerical solution of the governing equations. This study aims to

enhance the performance of rotary wing and fixed wing aircraft by better understand-

ing and by taking advantage of unsteady phenomena such as dynamic lift. In the past

few years many advances have been made in algorithm development for the numerical

solution of the Euler and the Navier Stokes equations. In this study, these new zonal

techniques are applied. A zonal approach is more computationally efficient in solving

the governing equations than previous approaches, and has certain advantages over

the standard single moving grid approach. The zonal grid consists of two grids, one

being the inner grid which is fixed to the airfoil, and the other being the outer grid

which extends to the far field or to a specified outer boundary. The inner grid is

allowed to rotate with the body, while the outer grid remains fixed. The thin-layer

Navier-Stokes equations are solved for the inner grid, while the Euler equations are

solved for the outer grid. Communication between the two grids is accomplished by

interpolating the flow quantities at the zonal interface. Solutions are obtained for

flows at fixed angles of incidence, and for unsteady flows over pitching and oscillating

airfoils. The computed results are in good agreement with available experimental

data.
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I. INTRODUCTION

A. BACKGROUND

Investigation of steady and unsteady flowfields over airfoils is an active area

of numerical and experimental research. Unsteady pitch-up motion of airfoils alters

significantly the aerodynamic characteristics of lifting surfaces. Pitch-up motion of

an airfoil produces lift augmentation and delay of stall to higher angles of incidence

compared to airfoils held at a steady incidence. Understanding the mechanisms that

cause the dynamic lift development is a subject of interest in both theoretical and

applied research.

A comprehensive explanation of the dynamic lift phenomenon is given by Tyler

and Leishman [Ref. 1]. To briefly summarize, unsteady airfoil motion tends to

maintain high lift to higher angles-of-attack, because the unsteady flow causes a

time delay in the build-up of the lift force and the adverse pressure gradient. The

unsteady motion also gives the airfoil a virtual camber which decreases the leading

edge pressure and pressure gradients. Depending on the flow conditions, as the airfoil

begins to stall, a vortex forms at the leading edge which grows with time which is

eventually shed downstream in the wake. This vortex shedding phenomenon alters the

chordwise pressure distribution on the upper surface of the airfoil resulting in higher

maximum lift coefficients. Sometimes, however, only a recirculating flow is observed

at the airfoil trailing edge. As the pitch-up motion progresses the recirculating region

extends upstream towards the leading edge and eventually a vortex is formed at the

trailing edge.



Rotary wing and fixed wing aircraft designers can enhance the performance of

the aircraft by taking advantage of the dynamic lift concept. However, the resulting

undesirable pitching moment variations have deprived helicopters and airplanes of

the benefits of dynamic lift [Ref. 2]. Carr [Ref. 3] gives a comprehensive review of

the progress that has been made in the study of the dynamic stall phenomenon.

Experimental work on steady transonic flow on airfoils was conducted by McDe-

vitt and Okuno [Ref. 4]. These data cover a wide range of flow conditions and can

be used for steady code validation. One of the pioneering experimental works on un-

steady airfoil flows was conducted by McCroskey et al [Ref. 5]. In their experiments.

unsteady dynamic effects for two-dimensional airfoil flows were studied for the first

time in conjunction with flows over helicopter blades. They showed the effects of

unsteady lift and pitching moment on the retreating rotor blades. Their research

also showed that unsteady motion parameters such as reduced frequency, appeared

to be more important than airfoil shape in determining the dynamic stall airloads.

Benchmark experimental data of oscillating and pitching airfoils was also collected by

Landon [Ref. 6]. The experimental data of references [5] and [6] gives enough quali-

tative information for unsteady code validation. Recent experiments with oscillating

airfoils, performed by Chandrasekhara and Brydges [Ref. 7], have shown definitively

that at subsonic Mach numbers the unsteady flow in the vicinity of the leading edge

can reach supersonic speeds and generate shocks.

Along with all the experimental studies being conducted, a great effort is also

underway to compute unsteady viscous flows. Developments of numerical methods

for the Navier-Stokes equations [Refs. 8, 9, 10] during the past few years provide

new tools for the investigation and prediction of airfoil flows. In this investigation

the compressible thin layer Navier-Stokes equations are solved using a zonal grid

approach. The objective is to develop a computationally efficient method to study
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two-dimensional unsteady flows. This will be accomplished by developing a solution

procedure for two grids, an inner viscous grid around the solid body, and an outer

grid which is coarser representing the outer flow field. The inner grid is free to rotate

to any angle of attack. and the outer grid remains stationary.

The idea of moving meshes and dynamic meshes is not new. The dynamic

and adaptive grid solution method refers to computational grids which are coulpled

to the physical problem that is being solved.An adaptive solution procedure with

grid points that continually move during the solution process in order to resolve -Ie

developing gradients has been shown [Ref. 11]. A dynamic type of mesh has been

applied by Rumsey and Anderson [Ref. 12] to simulate aileron buzz using the thin

laver Navier-Stokes equations.

The idea of overlapped or patched grid schemes was used by Rubbert and Lee

[Ref. 13] with the limitation that the grid lines at the boundaries were continu-

oits. Benek et al [Ref. 14) developed the "CHIMERA" approach for two-dimensional

embedded and overlapping grids. They demonstrated that the grid lines at the over-

lapped boundaries did not have to be continuous, and that the flow quantities could

be successfully interpolated. The "CHIMERA" approach was later extended to three

dimensions by Benek et al [Ref. 15] . Rai [Ref. 16] developed a technique for in-

dependent zonal grids where the flow variables were interpolated across the zonal

interface. Chesshire and Henshaw [Ref. 17] developed a methodology for solving the

steady compressible Navier-Stokes equations using multiple overlapped grids. Their

methodology was demonstrated by solving the governing equations on a composite

grid that was comprised of an airfoil grid, a leading-edge flap grid, a trailing-edge

flap grid and a grid for the outer flowfield. Chyu and Davis [Ref. 18] investigated

unsteady transonic flow using a moving airfoil grid. They developed stationary com-

putational grids around the airfoil at its lowest and highest angles of attack, and then
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interpolated a new grid as the airfoil oscillated to intermediate angles-of-attack. Reu

and Ying [Ref. 19] developed a composite grid approach to study the flow about

pitching airfoils in a wind tunnel. Their approach consisted of a structured inner grid

and an unstructured grid for the outer flowfield.

Unsteady problems have also been solved by oscillating the incoming flow, as

opposed to moving the grid. However, this method does not work if a solution is

sought for two or more objects, such as a wing tail combination or a canard wing in

relative motion to each other.

B. PURPOSE

In this work, unsteady compressible flows are investigated using a numerical

technique which is applied to zonal meshes. The governing equations are solved

on multiple computational grids, where one of the grids is free to move in unison

with the solid boundary and the other grid is fixed. The meshes overlap at the

zonal interface. The scheme that is developed is similar to the "CHIMERA" scheme

mentioned previously, but we impose the restriction of a circular shape on the zonal

interface.

The new approach developed in this study is more computationally efficient

compared to previous schemes used to study unsteady flows. The zonal grid approach

avoids the need to regenerate or interpolate entire grids at every angle of attack. The

zonal interface is in a known position; therefore the entire flowfield does not need to

be searched. In addition, since the outer grid remains stationary, the metric terms do

not need to be recomputed at each time step. Another advantage is that the zonal

interface is circular; therefore the flow variables are interpolated in the circumferential

direction only. The zonal grid approach also allows for the application of different

solution methods to the inner and outer grids. For example, viscous solution methods
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near the solid body and an inviscid method on the outer mesh can be implemented.

The primary objective of this investigation is to develop and test the zonal grid

methodology. The space discretization is based on Osher's [Ref. 26] upwind method.

An implicit scheme is used for time integration. An advantage of upwind schemes is

that they are naturally dissipative and no explicit artificial dissipation is required.

In order to meet our goal, a procedure for generating zonal grids was devel-

oped, along with the zonal flow solver. The effect of grid resolution on the accuracy

of solutions was studied first for steady flows and the solutions were compared to

experimental data collected by Harris [Ref. 21]. The unsteady results were validated

using the experiments by Landon. The dependence of the solution on the location of

the overlapped zonal region was examined. Viscous steady state solutions were com-

puted and compared to experimental data. Finally, unsteady flows were investigated

by computing solutions for airfoils in ramp and oscillatory motion. The ramp motion

was started at zero angle of incidence, and ramped up to 30 degrees. The computed

pressure coefficients were verified by comparing with available experimental pressure

distributions. The boundary layers computed for this case were also compared to an

interactive boundary layer code [Ref. 22]. The oscillatory test case was verified by

comparing the computed pressure coefficients with experimental data. This approach

and the computed results are described in the following chapters.
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II. GOVERNING EQUATIONS

In order to compute compressible viscous fluid flow around a body, the conti-

nuity, momentum and energy equations must be solved simultaneously. The vector

and the conservation-law form of the compressible Reynolds-averaged Navier-Stokes

equation is presented. A detailed derivation can be found in [Ref. 23]

A. CONTINUITY EQUATION

The continuity equation expresses the conservation of mass law applied to a

fluid passing through a control volume fixed in space

0• + (V pV) = 0 (2.1)

at

here p is the fluid density and V is the fluid velocity. Equation 2.1 states that the

net mass flux through a control volume bounding surface must be equal to the time

rate of change of the mass inside the control volume. In a two-dimensional Cartesian

coordinate system this equation reads

Op 0 0
S+ ax(pu) + 7-(pw ) = 0 (2.2)

where u and w are velocity componerts along the x and z directions, respectively.

B. MOMENTUM EQUATION

The momentum equation expresses Newton's second law as applied to a fluid

element passing through a control volume fixed in space. The momentum equation

is:
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The first term in equation 2.3 represents the time rate of change of momentum

per unit volume in the control volume. The second term represents the moment flux

through the bounding surface of the control volume. f is the body force per unit

volume and Hlij is the stress tensor given by

Iji, = -Pbij + POuj 32 bxuk] (2.4)

where i,j,k = 1,2,3 and Sij is the Kronecker delta.

By substituting equation 2.4 into equation 2.3 and expanding equation 2.3 for

a two-dimensional Cartesian coordinate system obtain

AmpP~ fx 2 + ±1 2.[ (TL - L-) + [,L ax +

(2.5)

Equations 2.5 are known as the Navier-Stokes equations for two-dimensional flow.

C. ENERGY EQUATION

The energy equation is derived by applying the first law of thermodynamics (ratf

of change of energy = net heat flux into particle + rate of work done on particle.

Oe OQ 0
t p(fu + fw) + T(eu + pu - urxx - wrz, + Q.)

+ (ew + pw - wrzz - u7rxz + Qz) = 0

where e is the total energy per unit volume and Q is the heat addition per unit

volulme.

The above equations can be rewritten in non-dimensionalized vector form as

DQ OF 0G 1 (OF, 0Gv(.o-ý--- + a-x + -- =-Re I -g-• + --O-z (2.6)

where
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Q 
PUe

F = PU 2 + p G = puw
puw pw]2 + p

(e+p)u (e +p)w

1 0
7x Z 7, z

f4 94

Here,

T = Pi (uZ + wx)

4 1

f 4 = Ur.. + wr, + Pr( a -

94 = U-Tz + WTzz + Pr(y - 1 )a2

Re= U-L

where Uoo is the free stream speed and L is a reference length The pressure is related

to u,w,p, and e by
1 2

P=(y-1)[e--p(u +w 2)]

In the above equations, the ratio of the specific heats, -, is set equal to 1.4 and

a2 = PIP is the local speed of sound.

The density is non-dimensionalized by the free stream density, po", the velocities

are non dimensionalized by the free stream speed of sound, and the total energy is

non dimensionalized by pao.
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D. TURBULENCE MODEL

The Navier-Stokes equations can completely model fluid flow, however, in or-

der to resolve turbulent scales at high Reynolds numbers and realistic geometries.

very high grid densities are required. Therefore, present state-of-the-art algorithims

and computer technology allows direct simulation of turbulent flows for only simple

geometries and low Reynolds number flows which are of limited practical interest.

In order to enable computation of turbulent flows for configurations, of practical in-

terest, turbulence modeling is used. Turbulence models are implemented with the

time-averaged forms of the Navier-Stokes equations.

Two widely used averaging procedures are the standard time averaging proce-

dure for incompressible flow, and the mass-averaged approach for compressible flows

[Ref. 24]. The time averaging procedure destroys high frequency information of the

turbulence, but the unsteady mean flow information is preserved.

For the incompressible case, the randomly changing flow variables are replaced

with their averages plus their fluctuations. For example, in the Cartesian coordinate

system, fhe u velocity component is represented as u = U + u', where i is the mean

velocity and u' is the fluctuation about the mean. The governing equations are time

averaged, and the average of the fluctuation terms is set equal to zero.

In the compressible flow case, the mass-weighted variable of the Favre averaging

approach is used. In this case, u is represented as u = ft + u" where f is

- P

Here the time average of the doubly primed fluctuating quantities is not equal to zero.

After the substitution is carried out for all of the fluctuating flow variables, the entire

equation is time averaged. Next, all the time averaged terms that are doubly primed
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and multiplied by density are defined to be zero. For example

put/ = 0

The equations of mean motion resulting from the time averaging procedure have

more unknowns than equations. This constitutes the closure problem of turbulence.

In order to close these equations a turbulence model is used. Several models have

been proposed, in this study.

The Baldwin-Lomax (B - L) turbulence model [Ref. 25] was used. This model

is a two-layer eddy viscosity model which simulates the effect of turbulence in terms

of the eddy viscosity coefficient itt. The term y in the stress terms is replaced by

y +± t, and the It/P, in the heat flux terms is replaced with it/Pr + PIPt. The B - L

turbulence model is similar to the Cebeci-Smith turbulence model [Ref. 26], but it

bypasses the need for finding the edge of the boundary layer by using vorticity instead

of the boundary layer thickness. This model is adequate for flows which have mild

pressure gradients, but it is not very suitable for highly separated flows. A complete

description of the model is given in reference [25]. The basic equations of the model

follow.

In the inner layer, the eddy viscosity is assumed to be proportional to the mixing

length and vorticity, and in the outer layer it uses an exponentially decaying formula.

The inner eddy viscosity is computed up to the point where it is equal to the outer

eddy viscosity as shown below.

= { (-it)inner Y <• Ycrossover (2.7)
(Pt)outer Ycrossover < Y

where y is the normal distance from the wall and Ycrossover taken at its minimum value

where it equals y. The inner eddy viscosity is given by:

(itt)i..er = p12jWf
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where

I= tKY exp( - Y+)

y+ PwZurY

A+ is an experimentally determined damping constant, K is the Von Karman constant

The outer eddy viscosity is given by

Youter = KCcppF(y)WAKEF(y)KLEB.

F(y)KLEB is the Klebanoff intermittency factor given by

F(y)I\LEB = [+± 5 ,5 (CKLEBY)
11

K and Ccp are constants. For boundary layers

F(y)wake = ymaxFmax.

For wakes and separated boundary layers

2U-,• tDIF
F(Y)wake = Cwkymax F

Fmax

The quantity Ymax is the value of y determined for the maximum value of Fn,,,, and

Fia., is determined by

F(y) =yIl 1[ - exp A+.

E. TRANSFORMATION TO GENERALIZED COORDINATES

In order to use an unweighted differencing scheme that facilitate the numerical

implementation on body fitted coordinate systems suitable for complex configura-

tions, the equations are transformed to a generalized coordinate system using the
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following transformations

V= (x, z); = ((x, z). (2.8)

The above equations transform the governing equations from the physical domain to

a body fitted coordinate system. The transformation is carried out by using the chain

rule of partial differentiation

xx = - + (-- + (z(2.9)aX a a( a a a(

For example, the continuity equation would be transformed in the following manner.

apu apu apv apv apu apv

ax 'aý a( a~z aý +~a(

G,, z ,(x and (z are known as the metrics. The metric terms can determined in the

following manner. First write the differential expressions for • and "

d• = xdx + •dz; d(= (dx + (zdz (2.11)

In matrix form the expressions become

_ Z dx (2.12)
d( dz

Next we write the differential expression for x and z

dx = x~dý + x(d( (2.1:3)
dz = z~dý + z(d(

In matrix form they become

dx [ zý X dý (2.14)[dzJz ]ýZC d
By comparing equations 2.12 and 2.14 we can write

xý x( _ ý z (2.15)
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and solving for the metrics we get

•: = Jz¢

• -Jx( (2.16()

(X = -Jz•
(Z Jzý

where
1

(2.17)
Xý X(
Zý Z(

The mapping from (x, z) to (•, () is one to one if the Jacobian, J, is non singular.

F. THIN LAYER NAVIER STOKES EQUATIONS

In order to accurately calculate the normal gradients in the boundary layer, it

is necessary to make the normal grid spacing very fine close to the solid surfaces. n

the streamwise direction the flow gradients are not large and no fine grid spacing is

required. As a result the grid cells near the body have a very high aspect ratio. With

this type of grid, existing gradients in the streamwise direction are not fully resolved.

In order to facilitate the numerical implementation of the thin layer approximation

is employed by retaining only the viscous derivatives normal to the body. The thin

layer Navier-Stokes equations transformed into a generalized curvilinear system is

vector form are

0---4- + F + 0-G- IV
at cqýRe a

where

PU
1 puU + GP

"7] pwU + GP
(e + p)U - tp
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pW

1 pu W + (CP

' (e + p)J - (tP

The viscous flux term is transformed as

0

1 /mlu( + (L/3)m2G
J mlwc + (C/3)mrn2m
J YmlM3 + ( 1,/3)r' 2cT4

where

rn, (=2 + C

M2 = CruC + (zW(

(2.18)

Si a (U +W2 ) + 1 aq2

2&8 2 Pr(ýy-1) 0C

M4= =GU + GzW.

U and W are the contravariant velocity components. These velocity components

are normal and parallel to the constant ý and C surfaces, respectively.

U = 6 + U + ýw

w = +t'± + u+ Gw
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III. SOLUTION METHODS

A. ZONAL GRID GENERATION

The zonal grids were generated using a software package called GRAPE2D, de-

veloped at NASA Ames Research Center by Reese L. Sorenson [Ref. 27]. GRAPE2D

generates field grids by solving the following set of elliptic Poisson equations:

7XX - 7ZZ (Q.1,hz - rzz - Q(.1

GRAPE2D was used to generate the inner and outer grid separately. Iii gener-

ating the inner grid, the number of circumferential and radial grid points, the spacing

at the body surface, and the radius and shape of the outer boundary were specified.

Once the inner grid was generated, the outer boundary of the inner grid was used as

the inner boundary for the outer grid.

Due to the placement of the reference axis at the quarter chord of the airfoil.

the grid spacing in front of the airfoil is larger than aft of the airfoil. This causes a

problem in specifying an initial grid spacing for the outer grid. In order to obtain

the smoothest overall transition from the inner grid to the outer grid, the starting

spacing for the outer grid was obtained by averaging the minimum and maximum

spacing at the outer boundary of the inner grid. The outer boundary of the outer

grid was prescribed as a rectangular region, usually about six chord lengths away

from the body.

The perfectly circular zonal boundary was accomplished by reading the over-

lapped regions x and z coordinates and finding an average radius which was measured

from the center of the grid, regardless of the location of the inner body. Next, an

arbitrary grid point was chosen to use as a reference point. Then an angle theta,
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0, was calculated which represented the angle between the reference grid point and

the grid point under consideration. Then having the average radius and the angle 0

for the grid points in the overlapped region, a new set of x and y coordinates was

calculated using the following equations:

x = r cos0, y = rsin0 (3.2)

The overlapping of the two grids was performed by adding the next to last layer

of grid points from the inner grid to the outer grid, and adding the second layer of

grid points from the outer grid to the outer boundary of the inner grid. This resulted

in an overlapped region of three grid points or two grid cells in the radial direction.

The grid was also overlapped by a grid point in the circumferential direction.

B. NUMERICAL SCHEME

The numerical integration is performed using an upwind-biased, factorized,

iterative, implicit numerical scheme [Ref. 20] given by

[I + hý(VbA+ + zAf A,
I + hc(V'Bik.+ AS)k - Re-',SCMi,k)] x -• Q,,kl +-,k)

-[(Qk - Qik) + hA(F•P+, 2 ,k BF:( 2,k3.3)

+hdG(e,,k+2 - G - R-' hC(S+,k+112

In equation 3.3, hý = Ar/Aý, etc., A± = (OF/0Q), etc., are the flux Jacobian

matrices, and A, V, and 6 are the forward, backward and central difference operators,

respectively. The quantities Fi+1,/2.k, ~Gi,k+ 1 /2, and Si,k+1/2 are numerical fluxes. The

inviscid fluxes P and G are evaluated using Osher's upwinding scheme [Ref. 19]. The

numerical fluxes for a third-order accurate scheme are given by

S= Fi+ •,•2,k + I + 2A F + / 2 ,k] -

6LAFý/,k+2-F1[-AF,+3/2,k + 2AFý+1/2,k] = P(Qi,k, Qi+l,,)+ (.t

' [A~F+(Qi+l,k, Qi,k) + 2AF+(Q2 ,k, Qi+1,k)] -+/, zF~l~ FQ,,Q+,) 34
S[A.F-(Q,,•, Q:+1,k) + 2A.F-(Qi+1,k, Qa,k)]-

6
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\Vhere P is the first-order numerical flux for the explicit Osher's scheme given by

Fi+1/2,k = Fi.k + Fi+l,k - JQ + - F7} dQ]

where F1 F, + F;-, F, - + and AF± are the corrections to obtain a

higher order accuracy. The Osher scheme evaluates the flux assuming a shock tube

solution where F,1 is piecewise continuous and yields good predictions of the flux.

especially at supersonic Mach numbers. For the linearization of the left-hand side of

Eq. 3.3, the flux Jacobian matrices A, B are evaluated by the Steger-Warming [Ref.

28] flux-vector splitting.

Time accuracy of the implicit numerical solution is obtained by performing

Newton iteration to convergence for each time step. The approximation of Qn+l

at each subiteration is the quantity QP. When p _> 2, during a given subiteration,

QP = Q'n+, but when p = 1 and no subiteration is performed, then QP = Qn, and

QP+I = Q'~l BV subhierating to convergence, line,-zation and factorization errors

are minimized, because the left-hand side of Eq. 3.3. can be driven to zero at each

time step.

The linearization errors are eliminated by subiteration to convergence. Typ-

ically, two to three subiterations are sufficient to drop the residuals two orders of

magnitude during the Newton iteration process.

High order accurate shock-capturing schemes have some limitations; they may

select a nonphysical solution, they produce spurious oscillations and they may de-

velop a nonlinear instability in nonsmooth and discontinuous flow regions. More ap-

propriate high-order shock-capturing schemes, suitable for the computation of weak

solutions are the TVD schemes, described in detail in [Ref. 29, 30]. In the present

study, the Osher-Chakravarthy [Ref. 31] TVD scheme is used. This TVD scheme has

flux limiters which impose constraints on the gradients of the fluxes. The flux-limited
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values Af+ are computed from the unlimited fluxes Af± as follows

Af +3 / 2 ,k = minmod [A f+3/2k,k3A fi+1/2,k]

'A ,i+1/2,k = minmod [Afj+',2,k, O'Afi+3/2,k] (35)

.Aft+I/2,k = minmod [
Afi+1/2,k = rninrnod £[-/1 2 ,k,3Afi+l/ 2 ,k]

where the minmod operator is defined by

nzin,,od[x,y] = sign(x) x max[0,mrin{Ixj,ysign(x)}] (3.6)

The viscous fluxes Si,k+l/ 2 are computed with central differences as follows

Si,k+1/2 = S[Qi,k+1/2, (Q()i,k+1/2, (i,k+1/2] (3.7)
1

Qi,k+1/2 = I(Qi,k + Qi,k-1) (3.S)

(Q()ik+1/2 -Z Qi,k+l - Qi,k (3.9)

The experimental Reynolds numbers based on the chord length for the test cases

examined are in the range Re, ; 3.0 x 106- 5.0 x 106, and it is expected that the flow

is mostly turbulent. Transitional flow is expected to have a small effect at regions very

close to the leading edge. Present knowledge about boundary layer transition does

not enable computation and modeling of the transition regime. Therefore, only fully

turbulent solutions were computed. In the present work, the widely used two-layer

Baldwin-Lomax turbulence model was us( d. The effectiveness of other turbulence

models, such as the Johnson-King model (Ref. 32] and the RNG based algebraic

model [Ref. 33] for steady and unsteady flows, was investigated in references [34] and

[35].

C. BOUNDARY CONDITIONS

The solutions on the two grids are computed separately, with the inner and

outer solutions communicating through the zonal interface boundary. The inner grid
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surrounds the airfoil and includes the boundary layer region and the wake for viscous

solutions. Inviscid solutions are obtained by applying the flow tangency slip condition

where the normal contravariant velocity component, W, is set equal to zero on the

surface. For viscous solutions, the nonslip condition is applied for the velocities on the

airfoil surface. In both cases the density and pressure are obtained from the interior

grid points by simple extrapolation. For unsteady solutions, the surface velocity is

set equal to the airfoil speed obtained by the prescribed airfoil motion as follows

1 1

Unsteady solutions for pitching and oscillating airfoils are obtained by rotating the

inner grid only. Therefore, only the metrics of the inner grid must be reevaluated for

each time step.

At the inner zonal interface, the flow variables are obtained from the interior of

the outer grid solution. Similarly, the inner zonal boundary of the outer grid obtains

boundary information from the interior of the inner grid. The inner and outer grid

radial lines are not aligned, in general. The relative location of the two grids with

respect to the inertial reference frame as the inner grid rotates is computed. These

distances between neighboring points at the zonal interface are used for a weighted

averaging of the conservative variables.

All flows were computed for subsonic free-stream speeds. At the subsonic inflow

and outflow boundaries of the outer grid, the flow variables were reevaluated using

zero-order Riemann invariant extrapolation. At the inflow boundary, there are three

incoming and one outgoing characteristics. Therefore, three variables, the density p,

the normal velocity w, and the pressure p, are specified and the fourth variable, the

axial velocity u is extrapolated from the interior. The inflow boundary conditions are

given by
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I = (=)

a1, = - f.-).
it, = (R+ + R-)/2

PI = (plr-)

li're R+, R- are the incoming and outgoing Riemann invariants given by

R+ = u.= 112 - 2a/(-, - 1)

.\t the outflow boundary there are one incoming and three outgoing characteristics.

I (i['fore only one quantity, the pressure, is specified. while the others are extrap-

,,hted from the interior. For the density and normal velocity, simple first-order

('Nt rapolation is used, and the axial outflow velocity is obtained from the zero -order

,tIitoing Riemann invariant. The outflow boundary conditions are giveii bv

PI = P2

Ut = R+ -2al/(y - 1)

a = I P / (3.11)

1l'I ((I'2

lIl = p

PI
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were solved. For the unsteady flow solutions, the outer grid remained stationary and

the metrics were not reevaluated at each time step.
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IV. RESULTS AND DISCUSSION

The validity of the zonal grid approach was first investigated for inviscid solu-

tions. An advantage of the present approach is that different grid densities may be

used for the inner and outer grids. However, the accuracy and the conservative char-

acter of the solution for different locations of the zonal interface and grid densities

must be assessed.

First, the accuracy of the computed results for different inner and outer grid

densities was evaluated. The effect of the location of the zonal interface relative to the

airfoil on the accuracy of the solution was also investigated. Then viscous solutions at

fixed angles of incidence, up to approximately the static stall angle, were computed.

Finally, unsteady flow responses to a ramp motion at subsonic free-stream speed of

M,, = 0.3 and for an oscillation at a free-stream speed of Mio = 0.6 were computed.

A. STEADY STATE SOLUTIONS

1. Inviscid Test Cases

Preliminary test cases were computed using coarse meshes with an inviscid

solution. A two-block grid consisting of an 81 x 40 point 0-type inner grid and an

81 x 22 point 0-type outer grid was used as a baseline grid for the inviscid solutions.

Table 4.1 gives the inviscid grids that were tested.

a. Case 1. Baseline Grid: 81x40 Inner and 81x22 Outer

An inviscid solution using the baseline grid for subsonic flow over a

NACA-0012 airfoil at 14, = 0.8, a = -. 1' was obtained. The baseline grid is given in

figure 4.2. The distribution of the computed surface pressure coefficient is compared

with the measurements of [Ref. 4] in Fig. 4.1. Agreement with the experimental data
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TABLE 4.1: GRID DENSITIES OF THE INVISCID SOLUTIONS COMPUTED
FOR A NACA-0012 AIRFOIL AT M,= .S AND a = -0.1.

Case Inner Grid Outer Grid Inner Grid Radius
1 81 x 40 81 x 22 1.5 x chord
"2 81 x 40 41 x 22 1.5 x chord
3 81 x 40 81 x 22 1.0 x chord
4 81 x 40 81 x 22 .75 x chord
5 81 x 1S 81 x 19 OvalGrid
6 81 x 20 41 x 12 1.5 x chord

is satisfactory for an Euler solution. It can be seen that with this mesh the strength

of the shock is captured, but the location is lagged by 5 percent of the chord. The

baseline solution is converged at 2000 iterations.

a =-0.1 M=0.8
2

a- 1.5
0

1

*g 0.5

•0

-0 .
o,-0.5 *Measured, McDevitt

Z -1 -Computed Solution
O. -1.5

-2 i i i ,
0 0.2 0.4 0.6 0.8 1

Axial Location x/c

Figure 4.1: MT = 0.8 Computed Solution With Baseline Grid Compared to Exper-
iment.
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Figure 4.2: Inner Grid 81 x 40 Outer Grid is 81 x 22

24



b. Case 2. Baseline Inner Grid With a 41x22 Outer Grid

Next the effect of the outer grid density is investigated. The grid for

Case 2 was generated by starting with the baseline grid and removing every other grid

point from the outer arid. The resulting grid is given in Fig. 4.4. The Euler solution

is compared to experiment in Fig. 4.3. Overall the converged solution for this case

agrees with the baseline solution except it is noticed that the shock location for the

upper and lower surface are slightly farther apart than the baseline grid solution.

a =-0.1 M =0.8
2

a. 1.5

• •0.5 •"

0 0
0

a -0.5 r * Measured, McDevitt

€/) -- Computed Solution
CL -1.5

0 0.2 0.4 0.6 0.8 1
Axial Location x/c

Figure 4.3: A1 = 0.8 Computed pressure coefficient solution compared to experi-

mental data.
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Figure 4.4: Inner Grid 81 x 40 Outer Grid is 41 x 22
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c. Case 3. Overlap Boundary Set to 1 Chord Length Away From

Body

In this case the effect of the overlap boundary location is studied. The

grid generated is given in Fig. 4.6. It is seen that the transition from the inner to

the outer grid is not as smooth as for the cases where the boundary was located 50

percent farther from the airfoil. At the leading and trailing edges, the overlapped

boundary is only a half chord length away. In figure 4.5 the converged solution is

given. With this grid very little effect on the shock strength and location is seen. The

pressure coefficient before the shock is slightly underpredicted and after the shock is

slightly overpredicted.

a =-0.1 M =0.8
2

o. 1.5

1

• 0.5
(D 0 .......... .. .......
0

S-0.5 * Measured, McDevitt
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0. -1.5

-2 i i i

0 0.2 0.4 0.6 0.8 1
Axial Location x/c

Figure 4.5: AT, = 0.8 Computed Solution Compared to Experiment.
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Figure 4.6: Inner Grid 81 x 40 Outer Grid is 81 x 99
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d. Case 4. Overlap Boundary Set to .75 Chord Length Away

From Airfoil

In order to further investigate the tendencies observed in Case 3, an-

other grid is developed with the zonal interface closer to the airfoil. The overlapped

region is only a quarter chord away from the leading and trailing edges of the airfoil

as seen in Fig. 4.8. The solution obtained is compared to experiment in Fig. 4.7.

The pressure coefficient is again slightly underpredicted before the shock and slightly

overpredicted after the shock. It is also observed that the zonal interface location

relative to the airfoil has little effect on the solution.

a=-0.1 M=0.8
2 I

0

o. 1.
C
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S-1Computed Solution
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0 0.2 0.4 0.6 0.8 1
Axial Location x/c

Figure 4.7: Mo, = 0.8 Computed Solution Compared to Experiment.

29



Figure 4.8: Inner Grid 81 x 40 Outer Grid is 81 x 22
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e. Case 5. Grid With Oval Interface

The solution obtained for cases 3 and 4 showed that the location of

the zonal interface had very little effect on the computed solutions. The ability of

the zonal interface to pass flow discontinuities was also studied. It was known from

the previous cases that the shock location was near the the mid chord point. The

inner grid for this test case had to be generated so that the overlapped region was

very close to the upper and lower surface of the airfoil. This was accomplished by

generating an oval inner grid and an oval zonal interface. This grid is shown in figure

4.10. The computed surface pressure coefficient distribution is shown in figure 4.9. It

is in agreement with the experimental data and with the previous computed solutions.

The computed flow quantities, such as density and pressure, showed that the zonal

approach used can pass shocks through the zonal interface. Figure 4.11 shows Mach

contours which smoothly pass through the overlapped boundary.

a=-0.1 M=0.8
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Figure 4.9: Mfi• = 0.8 Computed Solution Compared to Experiment.
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Figure 4.10: Inner Grid 81 x 18 Outer Grid is 81 x 19
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Figure 4.11: Mfach Contours: Overlapped Region's Ability to Pass Flow Disconiti-
nuities.
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f. Case 6. Baseline Grid With Half the Radial Grid Points On

Outer Grid

In the previous cases, the effect of circumferential resolution was stud-

ied. Next, the effect of the radial resolution on the computed solutions is investigated.

Figure 4.13 shows the grid generated to test these effects. The computed surface

pressure coefficient distribution (in figure 4.12) was comparable with the solutions

obtained with denser outer grids. Computations with an even coarser grid, e.g., a

41 x 11 point grid, predicted the shock location even further downstream due to lack

of streamwise resolution.

a =-0.1 M= 0.8
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4)-0.5 e Measured, McDevitt

Cn -__Computed Solution

-2 ......

0 0.2 0.4 0.6 0.8 1
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Figure 4.12: Mo,, = 0.8 Computed Solution Compared to Experiment.
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2. Viscous Test Case

The Euler solutions presented in the previous section were used to study

the effects of different grid densities on the computed solutions. Having confidence

in the predictions of the code, the next step was to generate a viscous grid with the

airfoil's quarter chord point at the center of the inner grid.

Viscous, subsonic flow solutions were obtained at the following fixed angles

of attack: 3.27',4.97',6.69',8.38',9.27', 10.12', 10.99' and 11.900. The flow condi-

tions of the measurements reported in [Ref. 21] were used, e.g., ill, = 0.3, Re =

4.0 x 106. The spacing of the grid was set to 0.0005 for the first grid point above

the surface. The quarter chord point of the airfoil was set at the center of rotation

so the airfoil could be ramped about the quarter chord point. These solutions were

obtained on a 181 x 56 point viscous inner grid and a 181 x 26 point inviscid outer

grid shown in figure 4.14.

Solutions were also computed on a grid with half the streamwise resolution,

e.g., a 91 x 56 point grid. The computed surface pressure coefficient distributions using

the 181 x 56 inner grid and 181 x 26 outer grid, are compared to experimental results

in figures 4.15 through 4.23.

Solutions for fixed angles of incidence were obtained by two methods. First

by rotating the inner grid to the specified angle of incidence and setting the oncoming

flow to zero degrees. Second by rotating the flow to the angle of incidence and

leaving the inner grid at zero angle relative to the outer grid. The computed pressure

coefficients and boundary layers were the same for both cases.

For the low Mach number viscous solutions, no flux limiting was applied.

It is seen that the computed results closely agree with the experimental data. At the

higher angles of incidence the suction peak is not exactly captured. This is probably

due to lack of grid resolution at the leading edge of the airfoil.

36



PF

Figure 4.14: A NACA-0012 Airfoil Grid Centered at the Quarter Chord Point,
181x58 Inner Grid and 181x26 Outer.
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Figure 4.15: Viscous Computed Solution Compared to Experiment for a = 3.27'.
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Figure 4.16: Viscous Computed Solution Compared to Experiment for a = 4.97'.
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a=6.69 deg., M=0.30, Re=2700000
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Figure 4.17: Viscous Computed Solution Compared to Experiment for a 6.69'.
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Figure 4.18: Viscous Computed Solution Compared to Experiment for a 7.54'.
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a=8.38 deg., M=0.30, Re=2700000
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Figure 4.19: Viscous Computed Solution Compared to Experiment for a = 8.380.
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Figure 4.20: Viscous Computed Solution Compared to Experiment for a = 9.27'.
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a=10.12 deg., M=0.30, Re=2700000
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Figure 4.21: Viscous Computed Solution Compared to Experiment for a 10.120.

a=!0.99 deg., M=0.30, Re=2700000
8I

0.

9 6 * Measured, Harris

SComputed Solution

.• 4
0

2

fl)) .. ...... ..

"-2 I I I
-0.2 0 0.2 0.4 0.6 0.8 1 1.2Axial Location x/c

Figure 4.22: Viscous Computed Solution Compared to Experiment for a = 10.99'.

41



a=1 1.90 deg., M=0.30, Re=2700000
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Figure 4.23: Viscous Computed Solution Compared to Experiment for a = 11.99'.
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B. RAMP MOTION SOLUTION

The unsteady solution for a ramp motion from a = 0' to a = 30' at I,, =

0.3, Re = 2.7 x 106 and reduced frequency , k = 0.0127 was obtained on both a

91 x 56 point inner grid and a 181 x 56 point inner grid. The pitch rate for the ramp

motion k is defined as k = &c/2U•. The computed lift response is compared with

the experimental measurements of [Ref. 6] in Figure 4.24.

a(t)=0.O to 15.5 deg., M=0.30, k=0.0127, Re=2700000
2 1

1.8 Measured, Landon
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0.8
O 0.6
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0.2
0

0 2 4 6 8 10 12 14 16
Angle of Attack, deg

Figure 4.24: Comparison of the Measured and Computed Lift for the Ramp Motion

Both the coarse and fine grid solutions closely predict the measured lift. How-

ever, at the higher angles of attack, the finer grid gives higher lift. The computed

surface pressure coefficient distributions at several angles of incidence are compared in

Figures 4.25 - 4.38. Experimental surface pressure coefficients were available for the

following angles of incidence: 2.94', 5.84', 8.910, 11.76', 15.5', and they are displayed

as diamonds in the figures. The computed surface pressure coefficient distribution

is in good agreement with the measured data over the entire incidence range. The

computed flowfield at the maximum angle of incidence, a = 15.5', is mostly attached.

A small separated flow region exists at the trailing c .- e region only. At a higher anglh
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of attack, a z 17.00, the computed solution shows the development of the dynamic

stall vortex in the leading edge region.

a=1.86 M=0.3 k=.0127 Re=270000012
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Figure 4.25: Computed ramp solution at a = 1.86'.
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Figure 4.26: Computed ramp solution compared to experimental data at a = 2.94".
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Figure 4.27: Computed ramp solution at a = 4.14'.
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Figure 4.28: Computed ramp solution at a = 4.87'.
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a=5.85 M=0.3 k=.0127 Re=2700000
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Figure 4.29: Computed ramp solution compared to experimental data at a 5.85".
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Figure 4.30: Computed ramp solution at a = 6.79.
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Figure 4.31: Computed ramp solution at a = 8.029.
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Figure 4.32: Computed ramp solution compared to experimental data at c= S.91.
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Figure 4.33: Computed ramp solution at a = 9.85'.
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Figure 4.34: Computed ramp solution at a = 10.800.

48



a=11.77 M=0.3 k=.0127 Re=2700000
12 .

0. 10 o Measured, Landon
0 Computed 181x56 Grid

15 8
A? _o 6

0
0 4

2

• -0 .........................

"-2 1 -6 I I
0 0.2 0.4 0.6 0.8

Axial Location x/c

Figure 4.35: Computed ramp solution compared to experimental data at
a = 11.77'.
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Figure 4.36: Computed ramp solution at a = 12.84'.
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Figure 4.37: Computed ramp solution at a = 13.89'.
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Figure 4.38: Computed ramp solution compared to experimental data at

a = 15.55'.
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1. Boundary Layer Comparisons For Ramp Motion

Early on in the development of the software, the computed pressure coef-

ficients agreed quite well with the experimental data. As test cases at higher angles-

of-attack were tested, it was discovered that the flow was not separating from the

trailing edge of the airfoil. The problem was discovered by investigating the boundary

layer profiles. A problem in the turbulence model was discovered and easily fixed.

The lesson here is that although the computed and experimental pressure coefficients

agree quite well it is important to check that the boundary layer profiles are reason-

able. In figures 4.39 through 4.48 the computed boundary layers are compared to

boundary layers computed by the interactive viscous inviscid boundary layer method

of reference [22].

The comparisons are made at x/c = .5 and at x/c = .9 for angles-of-

attack ranging from 2.94' to 15.50. The computed boundary layer profiles compare

quite well up to 15.50. At x/c = .9 for the angle-of-attack of 15.5', the comparisons

diverge. This happens because of the different turbulence models used. At this angle-

of attack, the flow is separating at the trailing edge so the turbulence models used

become very important.

51
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Figure 4.39: Comparison of computed boundary layer with an interactive boundary

layer program at the 90% chord for a = 2.94 degrees.
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Figure 4.40: Comparison of computed boundary layer with an interactive boundary

layer program at the 90% chord for a = 2.94 degrees.

52



a=5.85 x/c=.5 M=0.3 k=.0127 Re=2700000
1 1 1 f I

o Interactive Boundary Layer Code

0.8 - Zonal Navier-Stokes Code

S0.6

S0.4

0.2

0
0 0.2 0.4 0.6 0.8

Normalized Velocity u/U

Figure 4.41: Comparison of computed boundary layer with an interactive boundary

layer program at the 50% chord for a = 5.85 degrees.
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Figure 4.42: Comparison of computed boundary layer with an interactive boundary
layer program at the 90% chord for a = 5.85 degrees.
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Figure 4.43: Comparison of computed boundary layer with an interactive boundary

layer program at the 50% chord for a = 8.91 degrees.
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Figure 4.44: Comparison of computed boundary layer with an interactive boundary
layer program at the 90% chord for a = 8.91 degrees.
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a=11.77 x/c=.5 M=0.3 k=.0127 Re=2700000
1 1 I

o Interactive Boundary Layer Code

0.8 -__ Zonal Navier-Stokes Code

co 0.6
,0 0

'D¢

0 .2 -
-

0
0 0.2 0.4 0.6 0.8

Normalized Velocity u/U

Figure 4.45: Comparison of computed boundary layer with an interactive boundary
layer program at the 50% chord for a = 11.77 degrees.
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Figure 4.46: Comparison of computed boundary layer with an interactive boundary
layer program at the 90% chord for a = 11.77 degrees.
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Figure 4.47: Comparison of computed boundary layer with an interactive boundary

layer program at the 50% chord for a = 15.55 degrees.
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Figure 4.48: Comparison of computed boundary layer with an interactive boundary

layer program at the 90% chord for a = 15.55 degrees.
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2. Computed Ramp Flow Details

In this section. flow features of lhe computed ramIp motion are

I lw,(ý features are demonstrated by the ieCitv contout lines. Macit ,'t,11 tolIi1-.

-iit contour lines and mass-flux contours. The contour lines represent area< ()I

•i. ilowfield. for which the parameter of interest, remains constant. ('lustered coittutti

l,,.- represent areas where the parameter is rapidly changing.

In figures. 4.49 through 4.64. density. Mach number, vorticitv and liti-

1!11\. Contours are displayed for , = 1.i6' to o = 17..50'. In figures 4.65 thrul•-l1 .111)

1w, M.lach number contours are replaced by p)ressure contours. This was dune leIac;, 1,

i t rong gradients. caused by the vortices, tend to not give cleatr Mach u•iuLe

111 ltalllation.

In figure 4.63, a = 16.350. the beginning of a vortex is visible near tl,

aiiliig edge. At a = 17.00'. in figure 4.64 the vortex has moved T57 , of c(i,,it

,\wvfltream, and another vortex is starting at the leading edge. .\t (k = P).00

Ow, lirst two vortices merge into one stronger vortex located near the .50'/X i,),,

1,4,1,1T. Two smaller vortices are also clearly visible in the mass-flux contours oht I1,4'

it '5. The original vortex now detaches from the surface of the airfoil at 19.50 . .\

'0.500, a second vortex is shed from the leading edge area, and a the vortex ý,howi,

,it 19.5- has moved to the trailing edge. At a = 22.50'. the trailing edge vorte.x h,-

.,eii sited downstream. The whole process seems to repeat itself at a fastt rte0.

,t[ I e seen in the remaining figures as the airfoil ramps up to :300. The d•nmai, 1,,,

H, iitt,,oenon is observed in terms of density, pressure and vorticitv. The niose ,•,vi

,nt, lhing moment is caused by the vortex sitting at the trailing edge. It is imipotlt li

I 1,t. I he vortices do not dissipate and do not get distorted as they pass tirotll'ii t1,,

,',,ia inuterface.
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Next the solution was continued to angles beyond stall. Traces of alteriia,.

,ttx 4hedding from the trailing edge can be seen at o - 270. At high ai-1gh'- ,I

ii,, iý,nce the alternating vortex shedding is very well demonstrated iii figureý, 1-11

, it,,il.h -. 11 0. These computed solutions are iii general agreem- ent - Iilt the I ,1iId -

lie experimental investigations of Chandrasekahara et al. AI)o it cani IWe -ci t ii,,,

i 1w ./oTial method developed is capable of computing unsteady flows at verv hil

,,IWels-off-attack showing at least qualitative agreement with the experiment.
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Figure 4.49: Ramp M/otion Flow Details. M,,, .3, k =.0127. Re =2.7 x l0b.
a=1.86.
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Figure 4.51: Ramp Motion Flow Details, N4.= .3, k =.0127, Re =2.7 x 106.
0=4.14'.
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Figure 4.52: Ramp Motion Flow Details, NI.,, .3, k =.0127, Re =2.7 x l06.
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Figure 4.54: Ramp Motion Flow Details, M~=.3, k =.0127, Re =2.7 x 10'.
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Figure 4.55: Ramp Motion Flow Details, K,,= .3, k =.0127, Re =2.7 x 106.
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Figure 4.56: Ramp Motion Flow Details, M~=.3, k =.0127, Re =2.7 x 106.
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Figure 4.60: Ramp Motion Flow Details, M~=.3, k =.0127, Re =2.7 x 106.
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Figure 4.66: Ramp Motion Flow Details, Al,,, .3, k =.0127, Re =2.7 x 106.
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Figure 4.67: Ramp Motion Flow Details, iV~=.3, k =.0127, Re =2.7 x 106.
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Figure 4.68: Ramp Motion Flow Details, M,,, .3, k =.0127, Re =2.7 x 106.

a=19.000.
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Figure 4.71: Ramp Motion Flow Details, AIl,,, .3, k =.0127, Re =2.7 x 10'.
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Figure 4.72: Ramp Motion Flow Details, Al.,. .3, k =.0127, Re =2.7 x 106.
a = 21.00'.
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Figure 4.73: Ramp Motion Flow Details, MA = .3, k =.0127, Re =2.7 x 106.
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Figure 4.74: Ramp Motion Flow Details, YL, .3, k =.0127, Re =2.7 x 106,

a = 22.000.
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Figure 4.75: Ramp Motion Flow Details, V,,o .3, k =.0127, Re =2.7 x 106.
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Figure 4.76: Ramp Motion Flow Details, NI1 = .3, k =.0127, Re =2.7 x 106.
a=23.00'.
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Figure 4.77: Ramp Motion Flow Details, A4I, .3, k =.012-7, Re =2.7 x 106.

0=23.50'.
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Figure 4.78: Ramp Motion Flow Details, AI,=.3, k =.0127, Re =2.7 x 106.
0=24.00'.
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Figure 4.81: Ramp Motion Flow Details, Aif = .3, k =.0127, Re =2.7 x 106.
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Figure 4.86: Ramp Motion Flow Details, M. .3, k =.0127, Re =2.7 x 106.
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Figure 4.94: Ramp Motion Flow Details, M, = .3, k =.0127, Re =2.7 x 106,
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Figure 4.106: Ramp Motion Flow Details, AL,= .3, k =.0127, Re =2.7 x 106.
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C'. OSCILLATORY MOTION SOLUTION

The unsteady solution for a periodic ocillatorv motion, given by 0,(t) = 4.86 -

.'.').at If- = 0.6, Re,- = 4.,s x< 10. with a reduced frequency of A- 0.OIL

-1.,0 I)ktaiiiedl. Here the reduced firequtI'iiv% is defined as k = ...clt',. The flow foý

iikut lon Is Hilt Ially' purely subsonic: Im~ t aýs the angle of attack increases to alumw

:t 5 . su~personic flow conditions are eii( oultered at the leading edge region and
41

:~O1-01C shock forms. This shock is present during the upstroke until the maximur1-1i

,f attack is, reached and during the duovnstroke up to about a(t) - .5.0~ Th,

W0110d and mneasured lift and pitchin Ioen rsoeaecmped Inig

I mnd -t.12. respectively.

a(t)=4.86+2.44sin(wt), M=.6, k=.16, Re=4800000

0Measured, Landlon
0.9

0.8 Computed 181x56 Grid

Vi 0.70

S0.6
0

~0.5

0.4

0.3

0.2 p

2 3 4 5 6 7 8
Angle of Attack, deg

I'igutre 4.111: Comparison of Mveasured and Computed Lift for Os laovTesl

The computed lift and pitching m-omeont coefficients are in close agreement wirYý

ýnasured values. The computed surf~iwe pressure distribution is compared %%-t0

Il~dilsllronlnts of reference [6] for two angles during the upstroke and two angle-

it Mg the (lownstroke in Figs. 4.113 through 4.116 The computed surface pressure'I

i! rttc'r agreement with the measurements at thle lower angles of incidence (a = .5.95
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11, o = .5.11' down). At higher i(cidejices Fig. 4.114 and 4.115). the agreemenr

1, ) ahl' in the region around the shock. The global view of the computed densit'h

I1,,d slioows that the density contours smoothly cross the zonal interface for the cas,

I :,(o, ' cNists.

a(t)=4.86+2.44sin(wt). M=0.60, k=0.16, Re=4800000
0.05 . . . . .

o Measured, Landon

0.04 - Computed 181x56 Grid

= 0.03
00

00
: 0.02
E
0

0 - I I

2 3 4 5 6 7 8
Angle of Attack, deg

F[igure 4.112: Comparison of Measured and Computed Moment Coefficient fo:
(,iikatorv Test Case
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a=5.95 deg. up, M=0.60, k=0.16, Re=4800000
3 1 I i
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o 2 Computed 181 x56 Grid

00

0
0

a- -1
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Axial Location x/c

Figure 4.113: Comparison of the Measured and Computed Unsteadv Surface Pre-
-11W(iue[ficient of Oscillatory Motion. a = 5.95° upstroke.

a=6.97 deg. up, M=0.60, k=0.16, Re=4800000
31 1

a. 0 0 Measured, Landon

9 2 Computed 181x56 Grid
0 0

0
0 S0

• -1

-2
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Axial Location x/c

Figure 4.114: Comparison of the Measured and Computed Unsteady Surface Pr",
-W•,Coefficient of Oscillatory Motion. a = 6.970 upstroke.
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a=6.57 deg. down, M=0.60, k=0.16, Re=4800000
3 1

o Mer LnMeasured, Landon
0.x

, 2 Computed 181x56 Grid

C
A)0

0

-2 i i
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Axial Location x/c

Figure 4.115: Comparison of the \eaSure,[ and Computed Unsteady Surface Pre-
-,11V (-'oefficient of Oscillatory .Motion. o = (1.5-17 downstroke.

a=5.11 deg. down, M=O.60, k=0.16, Re=4800000
3 i i

0. Measured, Landon

9 2 Computed 181 x56 Grid

_ 0

0
0

0
0 0 10 0

U)

-2 I I

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
Axial Location x/c

Figure 4.116: Comparison of the .lea~ric,,I and Computed Unsteady Surface Pt,
Ct r ( oefficient of Oscillatory Motion. 5. 9 5. downstroke.
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V. CONCLUSIONS

A ()Ilt loll procedure suitabl)e foi- steady and unsteady compressible flow sli

iisiig zonal overlapped grids was (leveloped. Simple weightedl averag'-II \I %%;-

!'Iat the ov-erlapped zonal lintertaceý,. St 1 ady and unsteady. inviscid aiid \-'' l>

.-. olutioiis foi- subsonic and tranisonic flows over airfoils were presented to vahli' at

1 hw'Oiial grid ap)proach.

I'lie itiviscid solutions presented show the overlapped zonal interface's aijilit\ I''

low p~roper'ties without distortion. It was found that for the inviscid test CaSe'-

iw location of' the zonal interface is not Important. In fact. as the zonal interfarý

i (1c loser- to the airfoil, while keeping thle number of grid points collt atit. III

Ic~iecoefficient prediction actually 1111)roved. This Is dule to mlore Q~rild (*

,I ~lustered close to the airfoil. This te~st case had strong shocks on thle ulpper 111

IT'tv -wface of the airfoil, and as the grid points were moved closer to the airfoil.

IW FroIIIJ)Lted solution tended to have bigger oscillations near the shock.

'lIhe -,lead\, viscous test cases showed that using the Baidwin-Loniiax turbiiltmii

With the present approach gave accurate results for attached anid iniiidlY t

IIt dlow over stationary airfoils. Thil. case demonstrates one of thle ad-aliutau'!

I lhe present approach, specifically, that solving the inviscid equations onl the Wit

iiuid the viscous equations on the inner grid gives good results. The flow varia~lr-

also passed smoothly through the zonal interface.

[lhe ramp case again showed good agreement with experimental data.\\r

hcase aniother advantage of the Ipresew iuipproach was dis 1)laYed. Thie Howl uer

_,rot ated with the alirfoil to the tiew angles, of attack. The hig-h ordrati i

-(uicne enabled the software to convect vortices, and at high angles. these vort icc-

12.5



convected up to 3 chord lengths.

The final test case was an oscillatory one. For this test case, supersonic flow was

encountered on the upstroke at the leading edge region which produced a transonic

shock. The computed lift and pitching moment coefficients are in close agreement

with the measured values. At the higher angles of attack the agreement with measured

data deteriorated in regions near the shock.

The following are some recommendations based on this study.

1. It has been shown that the zonal grid approach can be used to study unsteady

viscous flows. A systematic comparison with other codes should be conducted

in order to quantify the efficiency of the present approach.

2. Presently, there exists no easy way to generate zonal grids. In this study the

grids were generated separately and then refined through several other pro-

grams. The development of a new or the modification of an existing software

package such as GRAPE is recommended. The user should be able to specify.

along with all the usual information, airfoil shape, the location of the overlapped

region, the number of overlapped cells and the size of the outer grid.

3. An advantage of the present approach is that it can be extended to multiple

inner and outer grids. A flow solver needs to developed to take advantage of

this so that effects of oscillating bodies in relative motion can be studied.
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